A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multi-objective Genetic Algorithm

نویسندگان

چکیده

Abstract In this study, a novel method is proposed to optimize the reinforced parameters influencing bearing capacity of shallow square foundation resting on sandy soil with geosynthetic. The be optimized are reinforcement length (L), number layers ( N ), depth topmost layer geosynthetic (U), and vertical distance between two (X). To achieve objective, 25 laboratory small-scale model tests were conducted sand. This laboratory-scale has used geosynthetics as materials one soil. Firstly, effect load was investigated using analysis variance (ANOVA). Both response surface methodology (RSM) artificial neural networks (ANN) tools applied compared capacity. Finally, multiobjective genetic algorithm (MOGA) coupled RSM ANN models solve multi objective optimization problems. design considered multi-objective problem. regard, conflicting objectives need maximize minimize cost. According obtained results, an informed decision regarding sand reached.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Pre-Calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-Objective Genetic Algorithm

Diesel engine emission standards are being more stringent as it gains more publicity in industry and transportation. Hence, designers have to suggest new controlling strategies which result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good approach inasmuch as several types of ...

متن کامل

Optimization of a Container Ship Dimensions Using Multi-Objective Genetic Algorithm Method

Today, marine transportation has a significant role in global trade. The characteristics of the containerized shipping have made the number of container ships grow every day and made significant improvements in the construction and operation of these ships. In this research, the main dimensions of a container ship are optimized according to different objectives. This optimization aims to reduc...

متن کامل

Optimal Design of Sandwich Panels Using Multi-Objective Genetic Algorithm and Finite Element Method

Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated core, which make them more considerable by engineering structure designers. It’s important to consider the limitations such as yielding and buckling as design constraints for optimal design of these panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried ...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

A Multi Objective Genetic Algorithm (MOGA) for Optimizing Thermal and Electrical Distribution in Tumor Ablation by Irreversible Electroporation

Background: Irreversible electroporation (IRE) is a novel tumor ablation technique. IRE is associated with high electrical fields and is often reported in conjunction with thermal damage caused by Joule heating. For good response to surgery it is crucial to produce minimum thermal damage in both tumoral and healthy tissues named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irrev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Geotechnica et Mechanica

سال: 2023

ISSN: ['2083-831X', '0137-6365']

DOI: https://doi.org/10.2478/sgem-2023-0006